Welcome to Issue 55 – August 2019.

It’s hard to imagine that this is the ninth anniversary of ‘Totally T-Type 2’. I continue to enjoy producing the magazine, but it gets harder as copy dries up and I have to ‘keep the show on the road’.

We live in a world which seems to be frequented by fraudsters. I suppose they have always been around, but modern methods of communication have undoubtedly made life easier for them and thus they multiply and increasingly prey on the unsuspecting.

I’m aware that at least three of our private advertisers have been duped by these scumbags and I end up feeling uneasy because fellow owners have lost money through placing an advertisement on my website.

I keep a sharp lookout for these ‘scammers’ and I warn ‘Wanted’ advertisers when I am aware that a particular ‘scammer’ is replying to adverts. We also post the following caveat emptor on the appropriate advertisements’ page:

“When you receive a response to a Wanted advert on ttypes.org, apply common sense. Does the person sound like a T-Typer? Ask for photos of all of the parts, including close-ups on serial numbers or other distinguishing features. If the person refuses or makes excuses, do not continue with the deal. Likewise, if you are selling parts, then be absolutely sure that any payment has cleared completely before shipping anything. Where possible, deal locally, face-to-face, or failing that, use PayPal, which affords you a level of buyer protection.”

Despite the foregoing, a ‘Wanted’ advertiser still occasionally gets ‘caught out’. If in the slightest doubt I’m always happy to be contacted for an opinion. jj(at)ttypes.org [please substitute @ for (at)].

A recent scammer, who has replied to several adverts is one Paul Haggis. Whilst his amateurish attempts to deceive are pathetic, I have nevertheless alerted several advertisers to his existence.

As I pen this editorial on 10th July, I am slightly missing my beloved PB. It was sold via Steve Baker at the end of June and is now in the hands of its new owner. Had I kept it for another two months, I would have owned it for 21 years; but one must not look back!

The blow is somewhat cushioned by the fact that I still have my J2, which is coming up to 54 years of ownership and now has its rebuilt engine and its gearbox installed. It just needs to be rewired and I have a friend lined up to help with this job.

My J2 was purchased in 1965 for 35 GBP and has not turned a wheel under its own power since 1966. It might even be on the road one day – mustn’t rush these jobs!

I’ve just had a visit from David Taylor from Sydney ‘down under’. David had ordered some books and a head gasket set and as he was due to visit an old friend in north Bristol, it was convenient to travel from Chichester on the south coast, via south east Bristol where I live.

Next week I have John and Robin Libbert visiting from Ohio. I have occasionally corresponded with John, so it will be good to meet him and his wife.

The ‘Totally T-Type 2 Tour of mid- Wales’ is now a little over seven weeks’ away. The routes have been checked and the Roadbook has been sent for printing. All down to the help of Brian Rainbow – I don’t know what I’d do without him!

We can still take a couple more entries. Just to recap, the dates are 23/24/25 August 2019 with an optional stay on the 26th. The booking reference is ‘Octagon Car Club’ and a £20 non-refundable deposit per person is payable on booking (Telephone number 01597 823700). The rate for guests staying for 3 nights is £80 per person per night with a 50% reduction for those staying the extra night. There is no single room supplement – up to a minimum of 6 available.

Entry fee is £45 with a reduction of £10 if there is no passenger. Entry forms can be obtained from the editor at the jj(at)ttypes address given previously.

Finally, is this what happens when old guys get sent to a nursing home?

My thanks to Jerry Felper in the US for forwarding this on to me. I’ve slightly ‘doctored’ it – please excuse the pun.
The MG Octagon Car Club’s
‘Founders Weekend’

This year’s ‘Founders Weekend’ took on a special significance as it was a celebration of the 50th Anniversary of the founding of the Club by the legendary Harry Crutchley.

Running in parallel with the ‘Founders Weekend’ was TB80, co-organised by Mike Inglehearn and Jeff Townsend to celebrate the 80th Anniversary of the TB. The TB enjoyed a brief production span in 1939, until it was cut short by the outbreak of the Second World War.

The TB participants were ‘billeted’ at a country inn just outside of Witney, this being necessary because it was not possible to accommodate everybody in the private dining room of the Oxford Spires Hotel.

Brian and Rosey Rainbow presented us with some interesting routes for the two days of touring. The Saturday run took us to the south and west of Oxford in the area known as the ‘Vale of the White Horse’ and covered some 90 miles. The Sunday run, at around 85 miles, took in the Chiltern Hills area to the south and east of Oxford.

Setting out on the Saturday run, we made a point of stopping off at The Boundary House, now a pub, but formerly Kimber’s home from 1933 until 1938. As can be seen, the plaque on the wall was installed there, courtesy of the New England “T” Register back in 1990 when the Register came over from the US for their Circuit of Britain tour. My main reason for stopping was to check that the weeds in the border area below the plaque had been kept down and I was able to report back to Mike Leckstein that everything was ‘ship-shape and Bristol fashion’; meaning, in good order.

We then followed the post-war to late 1940s Factory test route and called in at The Black Horse, situated quite early on the route, for a cup of coffee. It did not seem 14 years ago since I last stopped there when I organised a run to mark 60 years since the start of TC production on 17th September 1945.

This Greene King brewery (Old Speckled Hen) public house is one of the venues used by the Abingdon Works Centre of the MG Car Club.

Having completed the test route we went ‘off-piste’ (we often do!) because the call of the massive Garden Centre at Millets Farm Centre in nearby Frilford was just too much for Sue to ignore. Octagon readers of this magazine (there are plenty of them) might recall that ‘Millets’ was a favourite venue for the ‘Wings Runs’ back in the 90s, when it used to attract over forty cars.

Having studied the roadbook, Sue was keen to visit ‘The Living Rainforest’ https://livingrainforest.org at Hampstead Norreys, situated at the southern-most area of the route. It was well worth going there to see lizards, beautiful butterflies and birds, Goeldi monkeys, Harry the Armadilly (six-banded armadillo), Cinnamon the two-toed sloth and many species of plants and trees.

We made our way back to the hotel and arrived early enough to enjoy a walk along the river Thames towpath to Oxford city centre.

For the Sunday run we had arranged to meet Mike and Angela Inglehearn at Wheatley windmill. The history of the windmill is sketchy, but it is thought to date from the 18th century.

With the coming of the nineteenth century and the certainty of title deeds, we know that mill was bought by George Cripps in 1857 and it has been in the hands of the Cripps family ever since, except that we learnt on our visit that it is currently in the process of being sold.

The picture shows the mill, which has an octagonal plan which narrows to form the circular rotating top.

We were fortunate to visit the mill on one of its rare open days (only 6 open days a year) and we enjoyed the hospitality of the locals with very nice home-made cake.

https://wordhistories.net/2017/10/18/shipshape-bristol-fashion
Our other stop on the Sunday run was at Pendon museum. We had heard excellent reports of Pendon and we certainly weren’t disappointed.

The inspiration for and founder of Pendon was Roye England, who was born in Perth, Western Australia in 1906. He came to England in 1925, staying in the Vale of White Horse. It was here that he saw the dramatic changes that were taking place in rural England and resolved to preserve in model form the English countryside as it was in the 1920s and 1930s. The realisation of this vision became his life’s work.

The Vale Scene is a massive landscape based on the Vale of White Horse and the modelling is absolutely stunning right down to the vegetables growing in the kitchen gardens of the cottages!

The Railway Scenes are no less impressive - we were so glad we went.

We thoroughly enjoyed the camaraderie of the Founders Weekend, as did the TB80 participants. In fact, they enjoyed it so much that they are talking in terms of having another reunion, but not waiting for TB85 or TB90 holding one instead in two or three years at the same venue.
Less expensive TC front brake improvement

Steve Priston now has twin leading shoe front brakes on his TC using a Morris Marina backplate as a template to alter his TC backplates and just a few other mods!

"I have recently fitted the twin leading shoe front brake upgrade onto my TC and I must say I feel that it was well worth all of the work involved, I can't make claims about it being worth the expense because it wasn't at all expensive, just time consuming, as well as requiring the services of a good welder, one of whom I am lucky enough to have as a very good friend.

My trade is as a mechanical fitter, currently working shifts over weekends and nights, so during quiet times it has been almost therapeutic, having a project like this one.

I first needed to find the most modern vehicles that I could, employing a nine-inch front drum brake, this turned out to be the Girling set-up, as used on a Triumph Toledo, Vauxhall Victor & Morris Marina 10CWT van or pick-up.

Source of supply was of course eBay, where a set of NOS (new old stock) wheel cylinders are to be had for as little as £20, shoes at £10, return springs £6.75, along with 22.5mm long shoe springs, cupped Girling type washers, 42mm hold down pins and Ford Fiesta spring clips; the adjusters are replicas made for a Willys Jeep at £12 a set. It even turned out that I could use the original TC hoses.

What made the job less daunting, was the purchase of a set of TC back plates and most importantly, the luck of finding a NOS offside brake plate, for a Marina van, at a hefty £28!

Above: The lucky find of a NOS offside backplate, stamping number 64276625, from a Marina van. Below: an alloy alignment dolly was made to centralise it with the TC plates, it being turned around, to give the opposite side/hand.

The Marina brake plate was my template/drilling jig, to ensure correct position of each of the critical components, with all of the positions being transposed onto my back plates, simply reversing the plate to give the opposite hand.

All of the holes were filled that were no longer required and a very important modification had to be made to the lower part of the back plates, to enable the lower shoes to fit. The Marina backplate is quite an intricate piece of press work for 10-gauge steel, so care needed to be taken in altering the plate without losing rigidity. This was done by only removing the minimum where needed and replacing what was removed with a very closely fitted piece of folded metal; this avoided any distortion issues on welding, unlike another article I have seen, where this was not done, causing problems.
The important modification referred to in the text.

Unlike a conversion using TD/TF parts, that has previously been featured, I did it the way it was fitted to the intended vehicles, but having been trained in bench fitting at 16 years old, with a few years' experience since, knew the importance of accuracy, when it came to making the various blanking pieces fit, with minimal clearances so as to avoid distortion during the welding process.

Thanks to the skill of my TIG man, I had no distortion to deal with and very little cleaning up to do.

This picture shows the modified TC back plates, prior to blasting & painting, having had all of the redundant holes filled, wheel cylinder spacer plates attached, the brake spring anchor plates along with the re-positioned brake shoe guides, it also shows the holes for the Jeep adjusters, along with the holes for the shoe hold down pins.

The wheel cylinders needed to be spaced off of the back plate with 5mm packing, the small plates next to them are the spring anchor points, the triangular shoe guides were carefully removed, being re-attached in new positions.

The shoes required quite a bit of alteration, firstly being too wide, requiring one eighth of an inch taken off each side, after the original linings were carefully removed & responsibly disposed of.

The shoes already have short slots for the hold down pins but these needed extending towards the underside of the linings, by about the same length again, another job was to attach a pair of one sixteenth of an inch-thick spacer plates to the trailing end of the shoes, for a better fit in their tracks.

The shoes were relined using a modern woven, brass wire reinforced material, which I know works well on vintage motorcycles with steel brake drums, which turned out to be the single greatest expense, at £50.

The adjusters needed a bit of head scratching because a flat area is required around them on the back plates so new bespoke 8mm pins were made & fitted to the shoes for them to act against, simply using modified bolts, with two nuts.

The Willy's Jeep adjusters give a movement equivalent to the lining thickness and I chose not to use spring washers, with the plain nuts as supplied but used dowty washers, with stainless nylock nuts, in an effort to prevent seizure through corrosion, by sealing the area of thread within the nuts, having of course copper slipped them on assembly.

One of the wheel cylinders from each side (Girling 64678875/6 or 64676115/6) required the three eighths UNF tapping on its inner port, increasing to seven sixteenths, enabling the TC hoses to fit. If using NOS cylinders they may be a bit grubby outside but the length of time spent on the shelf will require them to be stripped and cleaned as a matter of course.

What I have now is a floating, twin leading shoe assembly, which gives very good feel, being nicely progressive and powerful, rather than feeling like a piece of wood is being pushed against the inside of the drum, it is also lacking the unsightly/costly plumbing as used on the TD/TF, being pretty easy to bleed, with very accessible adjusters.
TB0251 and TB0252

TB0251

The following has been adapted from a little booklet entitled Our “Old Number One”, The First TB, TB0251 produced by Mike Inglehearn for the participants of TB80 (the TB 80th Anniversary weekend held in May 2019).

“TB0251 was one of two prototypes built in April 1939 along with TB0252. Whatever reason, it was not however registered until 4th July 1939 with the registration number BRX 805. Nothing is currently known of it from then until the 1960s when a log book shows it changed hands in 1961, 63, 65, twice in 66, and again in 67, with owners in London and elsewhere in the south of England.

An MoT, (probably its last) expired in 1968; a photograph (see below) dated May 1968 shows it in front of a greenhouse, which is likely the one in which it was about to be placed, where it rotted away for the next few decades.

After emerging again as a “barn find” it was dismantled at some point and bought by Geoff Radford, who renovated and replaced many of the parts, including having a new body made, but sourcing original wings, bonnet etc. to make it a viable restoration project. It was then sold.”

Ed’s note: I contacted Geoff Radford, who told me that

“I stripped down what was there to bare chassis, checked for trueness, shot blasted it and all the associated brackets etc. then painted it all.

The engine was a Morris XPJM, I sourced an original TB engine!!

The ID plate is with the car, thank goodness as are original axles, gearbox, diff, original radiator shell, but core etc was missing, lost years ago when sent for repair!! The body work was totally beyond all help and repair, unbelievably so.

I sourced original front and rear wings as well as a TB bonnet and original front apron.

The firewall was shot too, I sourced a good TA one.

I also found a perfect correct original petrol tank as well.

I had a new body made.

I saved and restored the original screen, hood frame, side screen frames, hand brake assembly, sourced correct TB headlights (with the inverted rims). I found an original, new rear number plate, single eared and a new original Lucas Pork pie lamp.

Also, an original FT 27 fog light.”

A week or two after contacting Geoff, a chance conversation with Keith Herkes on another matter and me mentioning that I was working on an article on TB0251, resulted in Keith telling me that Geoff had originally seen the car advertised and had asked Keith to go along and see it. Recognising its historical significance, he immediately alerted Geoff, who had no hesitation in purchasing it.

Keith has sent me lots of pictures taken of the car at the time of purchase and I have reproduced some of them to give an indication of the state that it was in. These, follow:
As mentioned previously, having done a tremendous amount of work on the car, Geoff Radford sold it as a restoration project. Quentin Miller, the new owner has had both the engine and gearbox rebuilt and obtained new differential parts from Roger Furneaux.

Here are a couple of pictures to show progress:
TB0252 is in Sweden with Hans Larsson. The picture was taken in early June by photographer, Per Svensson. Per also took a selection of photos for the front cover. The location is St. Anna archipelago, east coast of Sweden.

The Production Records show both TB0251 and TB0252 as built in April 1939. However, TB0252 was registered as BRX 265 on 3rd May 1939, whilst TB0251 wasn’t registered until 4th July 1939 (as BRX 805).

TB0252 was the Factory exhibition car, which still retains its metallic grey coachwork and dark green interior. Its original engine XPAG 506 (TB0251 had XPAG 501) was changed in 1955 by University Motors to replacement engine number XPAG B83435.

The first log book (Hans has this, together with two further continuation books) records TB0252 as being registered in the name of The M.G. Car Company with registration mark BRX 265 on 3rd May 1939. It changed hands on 1st December 1939 to a gentleman with a Surrey address. This chap moved house twice within the county of Surrey before moving again to Kent (the log book is stamped Kent County Council, 7th February 1946).

The next owner is recorded as living in Greenwich, but he or she probably didn’t keep the car very long because there was a change of owner with a Paignton (Devon) address in July 1948. This person kept the car until July 1964 when it changed hands again, but stayed in Devon at a Crapstone address in West Devon.

The next owner, and the last before Ben Hyams of Octagon Sports Cars (but see the next paragraph) bought the car, had a BFPO Ships address with two further change of address notifications to Gosport, Hampshire.

The second continuation log book shows Octagon Sports Cars (then of London E17) acquiring the car in November 1977. Our Royal Navy Officer had sold the car to them on moving to Australia and Hans purchased it from Octagon Sports Cars (who by now had moved to Chart Sutton, Kent) in December 1977.

The original log book for TB0252 in the name of The M.G. Car Company Limited.

Hans drove ‘Lady Grey’ from Chart Sutton (Maidstone) via London to Cambridge, on to Felixstowe and then a ferry back to Gothenburg. In Hans’ words “A very cold trip in minus degrees and snow., but at the age of 27 and a warm enthusiastic heart there was no problem!”

A young and enthusiastic Hans Larsson arriving back in Sweden in December 1977.
SPARK PLUGS

Originally published in the Alvis Car Club of Victoria, Australia Newsletter, to whom I am happy to give accreditation.

INTRODUCTION

This discussion is focused on engines of the type likely to be found in vintage and pre-war Alvis with compression ratios in the range of 5:1 to 6.5:1. Please note, some of the parameters quoted do not apply to modern engines with electronically controlled engine management systems.

Whilst most owners of vintage and pre-war Alvis cars are quite knowledgeable about the various heat range values available in spark plugs, not all are aware how this impacts the ignition and combustion process. This, compounded by the fact that spark plug types specified when these cars were new, are not likely to be available nowadays, makes them rather a fit and forget component, and when running issues develop, as long as spark plugs appear serviceable, they are dismissed as not being contributory to the problem, which is not always the case as we shall see.

Before examining spark plugs in detail however, it may be helpful to have a very brief look at the ignition and combustion process, before examining why the correct choice of plug is so vitally important.

NORMAL COMBUSTION

In a petrol powered internal combustion engine, as the piston approaches the end of the compression stroke, the pressure of the air-fuel mixture in the combustion chamber will have risen to about 80 to 120 psi, and the temperature, as a result of compression, will have risen to around 400°C, according to compression ratio and degree of throttle opening. After the occurrence of the spark, there is an ignition delay period before the flame front progresses steadily outwards from the point of ignition, with the pressure in the combustion chamber rising to between 500 and 1000 psi, accompanied by peak temperatures in the region of 2000° – 2500°C. It must be stressed this combustion process is not instantaneous but is a steady spread of the flame front, causing a progressive increase of pressure and temperature ahead of it.

IGNITION TIMING

The indicator diagram, Figure 1, shows the delay that occurs after ignition is initiated before any rise in pressure due to combustion occurs. It is because of this delay that timing of the ignition must be advanced to occur before the piston reaches top dead centre. Most engines are designed so that the ignition timing results in peak pressure occurring between 10° and 20° crank angle after top dead centre. This is purely a mechanical consideration so that the geometric angle which the connecting rod makes with the crank is the most favourable at the time there is the greatest pressure exerted on the piston.

As a number of factors influence the rate of combustion, it is necessary to be able to vary the degree of ignition advance so that peak pressure always occurs at the optimum time. These factors include (amongst others) engine speed, compression ratio, cylinder pressure and mixture strength. An increase in any of these will result in faster burning.

It can be seen that when starting, because of the very low engine speed it is essential that the timing is retarded as far as possible to prevent the rise of pressure forcing the piston back down before it has reached the top of its stroke, causing possible damage to the starter Bendix (or your wrist if you are hand starting).

It is also necessary to retard the ignition under high load conditions for example when climbing hills with the engine running slowly at wide-open throttle, as high cylinder pressure and resulting faster combustion will cause peak pressure to occur too early in the cycle, resulting in rough running, a reduction of torque and possibly leading to the onset of detonation.

DETONATION

Detonation, or ‘knocking’ is uncontrolled combustion and occurs when the temperature and pressure in the combustion chamber rise to a level where the steady, progressive combustion process no longer continues, and the whole of the remaining unburned mixture (the so called ‘end-gas’) ignites spontaneously. The resulting high-pressure wave hitting the cylinder walls and piston crown can produce a metallic knocking sound (the absence of audible knocking does not mean detonation is not taking place however).

Detonation causes loss of power, local overheating, and mechanical shock loading, and sustained detonation will inevitably result in serious engine damage.
The incidence of detonation depends on:

- Operating conditions such as mixture strength, ignition timing and cylinder head temperature.
- Characteristics of the fuel being used.
- Engine design factors including compression ratio and combustion chamber shape, although these are outside the control of the operator.

It is totally erroneous to assume that detonation cannot occur in low compression engines using modern high-octane fuels. If the ignition timing is too advanced then the pressure and temperature rise caused by compression added to the pressure and temperature rise caused by combustion can cause spontaneous combustion of the end gas.

Detonation can lead to pre-ignition because of overheated surfaces in the combustion chamber.

PRE-IGNITION

Pre-ignition is an entirely different phenomenon and should not be confused with detonation. Pre-ignition is an uncontrolled ignition process where the air/fuel mixture is ignited at any time prior to the spark occurring. Ignition in this instance is initiated by localised hot spots in the combustion chamber where the temperature has risen to over 850°C. These hot spots can occur at spark plug electrodes, exhaust valves, overhanging gaskets or ash and carbon deposits. Pre-ignition can occur at any time in the inlet cycle and if it occurs while the inlet valve is still open then back firing through the carburettor will result.

The danger with pre-ignition lies not with the destructive high-pressure shock waves that occur in the case of detonation, but rather the intense heat build-up that results. In nine cases out of ten, pre-ignition is initiated by overheated spark plug electrodes. Every 10° of ignition advance will raise spark plug firing end temperature by 70°C to 100°C. This situation is dangerous and can cause serious damage to the engine, especially when it occurs in only one cylinder, when the effects may not readily be noticed.

In the normal combustion process, the piston crown and combustion chamber surfaces are protected from very high temperatures by a thin boundary layer of relatively stagnant air-fuel mixture. However, if detonation or pre-ignition occur, the extremely rapid combustion removes this boundary layer exposing the surfaces to the full heat of combustion. This almost always manifests itself in softening and consequent pitting of piston crown.

THE SPARK PLUG

Although the spark plug appears to be a fairly simple component, the conditions under which it has to function are very exacting. It has to withstand pressures up to 1000psi and temperatures reaching 2500°C. At moderate engine speeds it has to carry a 5 - 10 000-volt spark 25 times every second. In these conditions, the plug insulator and electrodes must remain within an optimum temperature range of between 450° - 850°C, known as the ‘self-cleaning temperature’. This is hot enough to burn off any combustion deposits that might form, but not so hot as to initiate pre-ignition.

HEAT DISSIPATION

To satisfy this requirement it is necessary for the spark plug to pass to the engine cooling system just enough heat to stay within this temperature range. As engines vary enormously it is obviously necessary to have different spark plugs with varying heat dissipation characteristics to suit different engines. The rate at which a spark plug dissipates heat is known as its ‘heat-range’. Spark plugs capable of passing a large amount of heat to the cooling system are known as ‘cold’ (or ‘hard’) plugs, generally used in higher performance engines which generate more heat per cycle.

Conversely, spark plugs which retain large amounts of heat are known as ‘hot’ (or ‘soft’) plugs and find use in cool running engines operating at low speed such as industrial or tractor engines.

The design of the spark plug determines the rate at which it passes heat to the cooling system. The primary method used to do this is by altering the length of the insulator core nose as shown in Figure 2. A cold plug with low insulator seat will conduct more heat to the cooling system and will remain cooler. Conversely a hot plug with high insulator seat will retain heat from the combustion chamber so the firing end will stay much hotter.

In addition, the gas volume of the plug, which is the area between the insulator nose and the shell, can be varied - a greater gas volume exposes the insulator to more of the combustion flame and as a result it stays hotter. Further, the alloy composition of the electrodes can be formulated to conduct heat faster. This means it is not possible to visually determine the heat range of a particular spark plug.
HEAT RANGE

The method of classifying spark plugs is by using a numbered scale. This was initially based upon the time in seconds it took for a plug to heat from cold to auto-ignition temperature in a test engine. Unfortunately, nowadays there is no universal numbering standard and every spark plug manufacturer uses their own system.

To make things even more confusing some manufacturers, for example Bosch and Champion, use low numbers to indicate a cold plug with the higher the number the hotter the plug, while others, such as NGK, do the opposite, the higher the number the colder the plug.

The Champion range goes from 1 (cold) to 23 (hot) but then there are additional ranges for industrial and racing applications. Furthermore, Champion heat ranges have undergone a number of changes, so it is not a straightforward process to find a current equivalent for a pre-war heat range.

The Bosch range is possibly simpler, ranging from 13 (hottest) to 2 (cold) but then continuing from 09 to 06 for very cold racing plugs.

The NGK general application range is similar to the Bosch range, but reversed, ranging from 2 (hot) to 10 (cold) and then extending to 12 for racing applications.

The KLG range (though KLG plugs are no longer available) equates very closely with the NGK range, one simply has to delete the final zero from the KLG number. This is useful as KLG plugs were often specified in Alvis cars. For example, a KLG TMB50 (mid heat range plug specified for the Alvis 12/50) has a direct equivalent in the NGK A5, or better still the NGK AB5, essentially the same plug but with a reduced 13/16" hex, allowing a standard plug spanner to be used, which is a better fit in the plug recesses of the 12/50 cylinder head.

READING SPARK PLUGS

The best way to tell whether a spark plug is of the correct heat range for a particular application is by ‘reading’ the spark plug firing end as shown in Figure 3. It is essential to do this after a period of normal driving as prolonged idling or slow speed running will give false indications on an otherwise correct plug.

A useful fact to remember is that on the NGK range, a change of one heat range number will result in a change in the firing end temperature of a plug by 70° to 100°C. This means if a plug is operating just inside the overheating range, a reduction of at least two heat range numbers will be required to bring it back to the optimum temperature.

It is not recommended to make spark plug changes at the same time as another engine alterations, such as carburetion or timing. Performing multiple changes at one time will lead to misleading and inaccurate conclusions if any issues occur.

Figure 3 (below).
A 12/50 Case Study

This concerns a 12/50 (in fact a 1924 SA 12/40 that has been converted to OHV 12/50 specifications). The history of this vehicle is not known, though it has an early block with recessed side cover, a cylinder head bearing a 1926 casting date, is fitted with a M.L. Magneto and 30mm Solex MOV carburettor.

For some time it has suffered a number of issues, starting off with a case of overheating. Once this had been attended to it appeared to run well, but soon developed issues with loss of power, rough running with associated misfiring and back-firing through the carburettor. The ignition timing was checked and reset, and new plugs installed. Initially this appeared to offer some improvement but after a while the same symptoms started to re-develop. Finally, a second set of new plugs were installed together with a substitute magneto to eliminate the possibility of a defective capacitor in the magneto.

However, the vehicle still spent more time on the side of the road than actually driving. Again, timing was checked and re-checked, the magneto points were cleaned and re-set, carburettor jets were checked, the fuel filter cleaned, valve clearances checked, all to no avail. After every enforced stop it would run better for a while, but after a period of either high-speed or high-load running it would lose power dramatically with associated violent backfiring through the carburettor. In every instance of these problems occurring, not once were the spark plugs considered as they were “new plugs of the correct type”.

On its final outing it’s performance deteriorated to such an extent that it had to complete the last 100 kilometres or so on the back of a recovery vehicle.

SO, WHAT WAS WRONG?

Firstly, even though the cause of the problems were almost certainly ignition related, the carburettor was comprehensively checked, and found to be fitted with appropriate choke, jets and float of the correct weight, the filter was clean, and there were no leaks in the induction manifold, so the fuel system was ruled out. However, the interior of the carburettor was coated with black soot, this provided the first clue.

Secondly, the ignition timing was set at 42° BTDC. The Alvis handbook for the SA 12/40 and SA 12/50 specifies an ignition timing figure of 28° BTDC, fully advanced. Bear in mind that was the factory specification for a standard engine at the time. The engine in this car is not standard, and in view of its slightly raised compression ratio with consequent faster combustion time, this degree of advance (42° BTDC) is probably somewhat excessive. Nevertheless, it would almost certainly benefit from some advance over the factory setting.

Thirdly, the spark plugs were of an inappropriate heat range. When the symptoms first started to appear Champion D16 spark plugs were in use. These are an 18mm ½” reach plug toward the upper end of the heat range. In no way do they resemble the Champion 16 specified for early Alvis engines, which was in fact a cold plug in the Champion 18mm pre-war range.

Finally, when new plugs were installed, they were Champion D23’s. These are the hottest 18mm plug available from Champion. The advice given was that these were cooler plugs, this may have been caused by confusion with the NGK numbering system which goes the other way!

This photo is of the plug removed from #3 cylinder, and quite plainly shows all the signs of severe overheating. The insulator is blistered, the centre electrode is very eroded bearing in mind the very short time the plug had been in service, and the earth electrode shows signs of severe overheating.

The other three plugs had also been overheating, but not quite to the same extent, so it would appear that the problem was mainly confined to one cylinder. Interestingly #3-cylinder inlet valve spring was broken.

CONCLUSION

It is likely that all the problems this 12/50 experienced were due to pre-ignition caused by a combination of the use of spark plugs with too high a heat range together with excessively advanced ignition timing. Either of these factors in isolation would probably not have caused these symptoms to appear, but once over advanced timing heated an already hot spark plug electrode to over 850°C, pre-ignition would start. Initially, as the other three cylinders were still running normally, this would manifest itself only as a loss of power with associated rough-running (which indeed was the case). Continued pre-ignition would then further raise the temperature of that spark plug enough to ignite the incoming charge on the inlet stroke while the valve was still open. This would cause the backfiring through the carburettor and would explain the soot on its inner surfaces. It could also explain the broken inlet valve spring on that cylinder, as combustion taking place with the valve open would cause it to be violently opened even further until the spring became coil bound and ultimately fractured.

As already mentioned, after the enforced roadside stops during which time everything bar the spark...
plugs were examined or adjusted, it would appear to run better for a while, though the symptoms soon reappeared. In reality what was happening was the engine was simply given time to cool down.

The cure for the problem was quite simple. After installing a replacement valve spring, spark plugs of an appropriate heat range were installed, and the ignition advance was re-set to a more realistic figure. The car is now fitted with NGK AB6 plugs with an ignition advance of 35° and is running just as a 12/50 should! It is extremely fortunate that it does not seem to have suffered from any engine damage.

Editor’s Note: Although this article was written for Alvis vintage and pre-war models with compression ratios in the range 5.1 to 6.5:1, (the TA’s compression ratio is 7.5:1) the principles are not dissimilar. As is implied in the text, spark plugs are rather taken for granted, but after reading about the functions they have to perform we really ought to view them in a new light.

Worn front axle eyes

The simplicity of T-Types has encouraged their high survival rate, despite the early years of being driven by impoverished students. Numerous rebuilders will have come across some ingenious bodges to mask problems and it’s tempting to give some examples, but the concern that I could be feeding ideas to unprincipled owners overcomes what could be a good tale.

Most potential problem areas can be sorted out with the good supply of available spare parts. However, there’s one area that’s particularly challenging - worn axle eyes that support the king-pins on the TA/B/Cs. Just looking at the forces on the wheel when cornering and then realising that such forces are multiplied when applied to the king-pin, leaves one wondering how it all copes, especially after some 60 years.

It’s not surprising that some axle eyes have become oval, resulting in a loose king-pin, a potential MOT failure. An oval axle eye can allow the king pin to rock back and forth repeatedly, thereby exaggerating the initial problem with time. So how did the initial problem occur? The answer may come from batches of undersized king-pins. One such king-pin I looked at was over 2 thou. under-sized, and the resultant wear in the axle eye necessitated the eye being bored out and a sleeve fitted. This is an expensive operation and one that weakens the axle eye.

Recently, whilst replacing some king-pin sets on three beam axles, I discovered that all the front axle eyes were worn oval, and to compound the situation the new king-pins were 0.5 thou. undersized. This may not seem much, but given a worn axle eye, the last thing one needs is an under-sized king-pin. Ideally the king-pin should be drifted in with light blows from a plastic headed hammer.

Approaches to some spares’ stockists failed to convince them that this was a problem worth pursuing, one suggestion made was that just tightening up the cotter pin would solve the matter; not so. The cotter pin being at the fulcrum of the king-pin is unable to prevent it rocking. The possibility of trying other stockists may not help as many new king-pin sets seem to be made by just one company.

By good chance I learnt that Gerry Brown was commissioning some oversized king-pins from a precision engineering company. We decided on an initial batch of 5 sets of plus 2 thou. oversized king-pins and will wait to see how effective these are. However, king-pins need bushes so I’ve placed an order with the supplier who provided the last batch that John James and I ordered some time ago.

What seems to be a general lack of awareness of the problems associated with worn axle eyes is possibly explained by the fact that some (many?) TA/TB/TC owners no longer submit their cars to an annual MOT inspection where such issues would be picked up.

This is concerning, as early detection allows the much simpler remedy of using over-sized king-pins to be used. The alternative remedies for badly worn axle eyes are really not worth contemplating as finding engineering firms willing to undertake such work is becoming increasingly difficult and expensive.

Given that there is currently a lack of demand from owners for oversized king-pins, it is hardly surprising that suppliers don’t stock them. However, if after reading this article you feel that you would like to be associated with a case to be put forward to suppliers to stock them, please let us know.

In conclusion, I now realise that the main way axle eyes have become worn was due to the fitting of undersized king-pins. This was brought home to me whilst comparing the effect of using a 0.5 thou. undersized king-pin with a “spot on” king-pin in an unworn axle eye. The correctly sized king-pin was a reassuringly tight fit whilst the 0.5 thou. sized king-pin not only fell through the axle eye, but was able to rock significantly when held in the axle eye.

Undersized king-pins should be rejected

Most precision engineering workshops should be able to grind the king-pins to the accuracy required, there’s no valid excuse for undersized king-pins.

Fitting undersized king-pins will cause the axle eyes to wear

An additional issue is finding small engineering concerns willing to undertake fitting and reaming out king-pin bushes. However, a “garden shed” model engineer might be able to help using a technique suggested by Peter Cole (see photo 1).

A ¾” reamer is mounted in the chuck of a lathe and the stub axle with new bushes is slid on to a mandrel.
mounted in the tail stock. The object is to slide the stub axle’s king-pin bushes along the mandrel to meet the rotating reamer in the chuck, thereby assuring alignment. The reamer is set to rotate slowly and with plenty of lubricant, a firm gloved hand will be needed to hold the stub axle’s spindle as the reamer is engaged.

The rotating force is considerable, so engage the reamer slowly.

Photo 1 – The reaming method suggested by Peter Cole

If fitting oversized king-pins, the axle eyes and bushes will need an expanding reamer for the final cut. Reaming the bushes in alignment needs an expanding reamer with an extension guide shaft.

There are two types of expanding reamer; the first is a conventional expanding reamer that has a guide shaft screwed on and uses a sliding collar whose tapered end locates in the bush at the far end of the stub axle. The second type has the extended shaft as part of the reamer body, these are rare and expensive but more accurate.

Photo 2 - Showing how the final oversize ream is accomplished using an adjustable reamer with a guide.

The cutting blades on expanding reamers are not long enough to engage both bushes at the same time, so having reamed the first bush using the sliding collar located in the opposite bush, the reamer needs to be withdrawn and inserted in the second bush with the sliding collar engaged in the freshly reamed bush.

Reaming the bushes needs a sharp expanding reamer to achieve a good finish, so these ought to be done first as reaming the tough steel axle eye may dull the edges of the reamer. Adjustment of the expanding reamer can be painstaking as a light slide fit of the king-pin in the bushes is aimed for, whilst light blows with a plastic/wooden hammer on the king-pin is recommended for its fit in the axle eye.

Once the cotter pin is located and the securing nut tightened, hammer home the cotter pin before finally tightening the nut. Make sure the cotter pin is made from tough steel (eg EN24T) and not low carbon steel such as EN8 as the flat taper surface can “ruck up” when sliding over the locating flat on the king-pin.

Eric Worpe

Ed’s note: As mentioned in Eric’s article, he has ordered a quantity of bi-metal (known as ‘wrapped’) king-pin bushes. These are the same as originally fitted when the cars were new. Price to be advised.
TD/TF DVD Video on the rebuilding of the TD/TF Gearbox.

For those who have this DVD Video, Keith Meyer offers some advice on using Barrie Jones' written guide in conjunction with the video itself.

This article references the Barrie Jones gearbox rebuild video, although it is also equally pertinent for a general gearbox rebuild.

I have just completed the second rebuild of my MGT TF gearbox, all within a month and a half. To that end, I wish to share this experience, pointing out on how to prevent this unnecessary twofold activity.

It happened because on the first go round, all I did is watch Barrie Jones’s excellent MG Car Club T-Register DVD video on the rebuilding of the TD/TF Gearbox.

Regrettably, I didn’t follow his in video verbal instructions to use his written guide in conjunction with the video itself.

On the second go-round I watched his video and followed his written guide at the same time. Please note that the two are not completely in step with one another. Therefore, I would strongly recommend to read and watch, and watch and read, until you understand the proper progression of parts entering the gearbox and only then perform the testing tasks.

Why did I rebuild the gearbox twice?

In the video, Barrie gets ahead of himself by about two minutes and if you are following the video, while reading the guide, you will notice that the presentation becomes out of synch.

If you are solely following the video, which I did on the initial pass of the rebuild, you will miss a critical step in the assembly process, a step that ultimately culminated into a second rebuild!

Now the problem.

In the video, at approximately 2:00:39 into the presentation, Barrie goes to test the operation of the gearbox by moving the selector shafts and spinning the main shaft to see if each gear is engaging correctly.

This testing process takes about two minutes.

At 2:02:18, after he completes the testing, he then notices that he has forgotten to install the circlip on the end of the third selector shaft.

As he installs the circlip he says something like “that could have been disastrous”.

WELL, FOR ME, IT WAS DISASTROUS!

During the testing phase of the third selector shaft, I managed to slide the shaft back too far, simply because there was no circlip on the shaft to stop its travel.

I, too, had missed the installation of the circlip as presented in the video. Had I been reading along, while watching, I would have become aware of this video error because Barrie installs the circlip 5 steps prior to the testing phase, in his written guide.

But I didn’t do that, obviously.

As a result of the unrestricted over travel of the third selector shaft, the sliding hub violently released all the balls and springs located between the striking dog and third selector shaft, littering the inside of the gearbox, the work table and shop floor!

Prior to this catastrophe, the gearbox had tested out very well and I was effectively finished, save for the application of the safety wire and closing the gear box up.

I spent somewhere between four to five hours attempting to get all the balls and springs back into place – a most counterproductive effort. This is an impossible task to achieve with all the parts in place in the gearbox housing.

Accordingly, I commenced with yet another teardown to remove the sliding hub/striking dog assembly from the first motion shaft, and the following:

- Dug out all the silicone sealant in all the locations.
- Zip tied the rear flange to the rear casing so it wouldn’t fall out and damage the new felt washer.
- Removed the rear casing, destroying the gasket which required replacement.
- Dropped the laygear to the bottom of the casing. Then pushing out the first motion shaft bearing I damaged it, and the guard behind it. These, too, had to be replaced.
- Pushed out the main shaft.
- Disassembled the first motion shaft, and spent almost a day reinserting the balls and springs between the sliding hub and striking dog.
- Rebuilt the first motion shaft.
- Reinstalled the first motion shaft and main shaft. The laygear tabbed washers would not align with the casing slots.
- Removed the first motion shaft and main shaft a second time.
- Realigned the tabbed washers on the laygear.
- Reinstalled the first motion shaft and main shaft. This time the laygear dropped in correctly.
- Reassembled everything and when I got to the third selector shaft I installed the circlip AND ONLY THEN I tested the gearbox operation.

EUREKA!

After a lot of cussing and breaks for mental sanity, I now have a rebuilt and operational gearbox and gained a pretty good idea on how to rebuild one!

Now, wasn’t that easy?

Ed’s note: I have a rather ancient copy of the video which I can send for a ‘couple of quid’ plus postage, so total cost including UK postage would be a ‘fiver.’ The written guide is included in the very useful little book ‘Barrie’s Notes’, available from the T-Shop.
Bits & Pieces

Classic Car Loan Project

The aim of this scheme is to encourage the next generation of classic car owners by giving younger drivers the use of a classic car for up to a year. This is made possible due to the generous spirit of car owners and classic car clubs who have offered the cars to the scheme. The MG Octagon Car Club has decided to participate in the scheme and full credit goes to them.

Young enthusiasts, normally 25 years or older may apply for a range of cars that have been donated for loan. There are no hire or loan charges involved but there is a requirement to look after the vehicle as if it were one’s own.

Insurance cover is obviously a key consideration and hence the 25 years or older stipulation, but Peter James Insurance is supporting the scheme and this is helping to partially defray the cost.

The issue of what will happen to our cars when we are too old to drive them crops up from time to time and comes under the spotlight when supply exceeds demand, which seems to currently be the case with Triple-M models. So, we need schemes like this to help plant the seeds of future ownership.

In the meantime, do keep taking the ‘Peter Pan pills’! I’d like to be driving my 1933 J2 when it is 100 years old, which would entail me surviving and being fit to drive until I’m 87!

TF MAP LIGHTS

It is surprising how many TF owners, despite references on pages 12 and 56 in the factory Operation Manual (AKD 658A) and on page N.27, Section N.39 of the combined TD/TF Workshop Manual (AKD 580A), seem unaware that two map lights, one over each glove box, were standard equipment. Many are also unaware that they are operated by a second position on the ‘P’ panel light switch. Pulling out the switch operates the three panel lights, turning it to the right and pulling it out again operates the two map lights.

![Panel Light and Map Light Switch](image)

On becoming aware of this oversight I have been conducting an informal survey of TFs and their owners, most of whom express surprise when I have pointed out that the panel light switch has a second position intended to operate map lights. They have been even more surprised when, after feeling around underneath the scuttles of their cars, I have drawn their attention to brackets welded at right angles to the scuttle and having a 20mm diameter hole into which the sprung map light bulb holder is inserted.

I suspect the reason for so many TF owners seemingly being unaware that their cars should have a couple of map lights is that the various restoration books, most of which cover the whole ‘T’ type range, either do not mention them at all, or give them only a cursory reference, often grouping TDs and TFs together, when covering electrics. There is no map light facility on TDs. Also, the factory Service Parts List (AKD 804) rather unhelpfully only mentions them in Section K under ‘Cables’ and not, as would be more logical, under ‘Lamps’. Another reason may be that replacement wiring looms do not contain any separate wiring to the map lights. As detailed on the wiring diagram on page N29 in the Workshop Manual there should be red with green wires running in parallel from the third terminal on the panel light switch to each of the two bulb holders. The wire to the panel lights should be red with white. It should be noted that, like the panel lights, the map lights will only come on when the sidelamps are also switched on.

Whilst most of the TFs I have examined no longer have map lights fitted, they have all still had the brackets for the bulb holders intact underneath the scuttle. If owners want to check the position on their own cars they should run their hand around under the scuttle about 13 cms to the left of the horn push on the driver’s side where they should be able to feel the bulb holder bracket unless it has been removed during a rebuild. The other bracket can be found in a similar position above the passenger side glove box.

Pressing the sprung bulb holders into the bracket holes is quite difficult as they are, as they need to be, a tight fit; and it is easier to do this if the dash roll is first removed or loosened so that you can more easily see what you are doing.

The light from both the panel lights and map lights is pretty poor, some would say useless, so upgrading the standard 2.2 watt M.E.S.(screw in) bulbs to LEDs of the correct polarity may be a worthwhile improvement.

With thanks to Barrie Jones for expert input on this subject.

MICHAEL FRIEND

Ed’s note: To my great surprise, mine work. However, I did not know they were there until Michael pointed this out!

Water Temperature MG TF1500

Nostalgia seems to play a big part in the cars I have owned over the past 8 years! In 2011 I bought a 1935 2 door Standard 9, mainly because my first car back in the 60s was the same model. Then in January last year I acquired a beautiful Post Office red TF because again, in the 1960s, I had owned two MG PAs. Unfinished business you might say.
Although it had been restored there were still many small finishing works required. One such was the absence of a wire between the temperature sender and the gauge, not surprising once I spotted the broken spade connector on the sender. A new sender and wire between that and the gauge rectified the problem – at least on short journeys in cold weather – with a reading of 80 degrees.

On the way back from Prescott in August the gauge shot through the roof causing me to pull off the M5 three times. The car seemed to be running well, no obvious loss of water, no steam, so I gingerly proceeded home – some 50 miles.

Once the engine was cold I checked the water level – ok so I suspected a faulty sensor and bought another new one and a new radiator cap. No joy, still overheating said the gauge.

I own a non-contact infra red thermal sensor (they can be bought for 12 pounds on Ebay) which, when pointed at the header tank when hot showed a reading of 60 degrees, perfectly acceptable. My electrician had already guessed that the temperature sender and the gauge were incompatible. Now having this confirmed he placed a 100 ohm resistor in the connecting wire and BINGO a sensible reading was obtained. In truth the gauge reads a little on the cool side so I think an 80ohm resistor would probably be more accurate.

Martin Gibson

Sidescreens – keeping the draughts out…….

Mike Sherrell has devised a draught excluder in an effort to impress Rosie (his partner) with the comfort afforded by a TC in winter.

Christened ‘The Rosie Clamp’, it’s a very simple device consisting of a small piece of ¼” ali plate with a sectioned wine cork glued to it with Devcon. A hole is drilled in the plate to slip over the windscreen wing bolt, which when done up, bears on the sidescreen, eliminating draughts entirely.

For the dry passenger to exit, merely loosen the wing bolt and rotate it 90º. Photos follow which best illustrate the device.

Found in France

Erik Taylor reports………………….

How about this?
Here, in France I found these……and there are NO MORE! Must have been a big promotion. . . beer PLUS the pint glass which is embossed and has an octagonal base.
What a FIND!!!!

Ed’s note: Yes, Greene King, who took over Morlands (the original brewers of Old Speckled Hen) did a couple of promotions. I still have a glass from a different promotion, which was part of a set. I gave away two of the glasses from this set; one to a T-Type owner in Canada and one to Australia.

Chemical Cleaning of Cylinder Blocks

A warning to check that the block has been thoroughly flushed after cleaning – it cost a member dearly!
Fancy ownership of a Vintage M.G.?

Chris Keevill, Secretary of the Early M.G. Society, has asked me to include the following advert:

1929 M.G. 14/40 two-seater for sale. Older restoration in good condition and running very well. Lots of history and many spares included in the sale. Price £32500 o.n.o. or would consider exchange for good M.G. TA or TC.

Phone Dublin 00353872694013 or email byrnej(at)eircom.net [please substitute @ for (at)].

(There are some more Vintage M.G.s for sale on the Cars For Sale page of the Early M.G. Society website www.earlymgssociety.co.uk)

An Enquiry regarding ‘Bill ???’, spares supplier in London

Your editor receives many an enquiry via the website from former owners of T-Types. One of these was received recently from Les Bailey, who told me that he is writing his life story and having owned several TCs in the ’60s and ’70s, he wanted to include a few TC details. Here is an extract from his e-mail:

I used a great spares supplier based in London, Bill ??? I would like to know his surname, which I can’t remember. He used to send me bits and let me pay when I could. I broke down in Penzance once, Bill sent me a new diff, again, ‘pay when you can’. I don’t think we would get that service today. Anyway, if you can help, that would be wonderful.

Of course, the spares supplier could only be Bill Thomson, so I sent Les a copy of one of Bill’s advertisements.

Les then sent me another e-mail in which he told me that as a young man of 18 his first car was a Rolls Royce 20/25 Sportsman’s Saloon. He acquired this at a good price as the owner was emigrating and needed to sell. The fact that the car had been driven through a gateway which wasn’t wide enough for it and problems with the ‘Petro Vac’ fuel pump didn’t help matters.

However, no matter how cheap was the purchase, he really couldn’t afford to run the car and sold it for a TC. Soon after selling the RR (he’s regretted selling it to this day), he received a letter from a man in Canada offering to pay twice the price he was asking and also his fare out to Canada and return to the UK.

The TC purchase in 1964 was to prove unfortunate because about six months into owning it he was ‘run off the road’ by someone unknown who was determined to get past him. In hindsight, both drivers were probably going a bit fast, but Les couldn’t remember anything about the lead-up to the crash, only what he was told later.

The car hit a concrete lamp post, hence the extensive damage. Les takes up the story:

I was left for dead on the verge: obviously not dead, apparently a groan indicated there was life left in me. The accident was in Hampton Lane, Solihull, and I was taken to The Cottage Hospital. By coincidence, the mother of a friend was matron, so I got very good attention immediately, and excellent aftercare. But then we all did in those days.

My shoes were left embedded in the wooden floor, (still there in this photo, I retrieved them and still have them), hence the leg to hip damage. Other damage too.

I attribute all my joint problems to that incident. BUT - I’m still alive and kicking!

Ed’s note: Quite a story which evolved from an initial enquiry regarding ‘Bill ????, spares supplier in London’!
TDs in AUSTRIA

I have been exchanging e-mails for some time with Jurgen-Gerrit Gartner in Austria. Since we began our ‘correspondence’ Gerrit has become the owner of both a TD and a TC.

During the course of his searches to buy a T-Type, Gerrit encountered many a ‘spammer’. One of these was a man from Germany who said he was getting divorced from his Spanish wife and was offering his English grandfather’s supercharged TC for 18,000 GBP with free delivery to Austria included in the price. A likely story!

Gerrit’s patience was rewarded when he found a TD to his liking. He acted quickly and travelled to the UK to take a closer look at it. He wasn’t disappointed and purchased TD21523 near Cambridge. Having arranged transport back to Austria, he then encountered problems with the Austrian authorities who wanted exhaust analyses etc. However, some careful tuning of the SU’s did the trick and satisfied them. Here’s a picture of Gerrit’s TD (the one with the UK plate – more about the clipper blue car below).

Gerrit’s TD21523 with the UK plates alongside TD/C7033.

An architect by profession, Gerrit’s main work is for the Zotter Cocolate Company. Some years ago the Company bought a clipper blue TD, for which he designed a glass garage. The TD, a MKII (TD/C7033 with original engine XPAG/TD/LHX7193) was the inspiration for one of the Company’s special chocolate products, known as Mitzi Blue for which a You-Tube video was made.

https://www.youtube.com/watch?v=mhtpUS0GNgE

Here’s a better picture of TD/C7033....

TD13854 ex-USA belongs to a friend of Gerrit's with paintwork described as a pearl-gleaming white/rose shade.

Returning to the clipper blue MKII, Gerrit found himself as the only one in the Company who was driving and caring for the car. The more he worked on and drove it, the more he became fascinated with the T-series, which led him to buy TD21523.

His fascination with the T-series has now resulted in the purchase of a TC needing restoration, from Steve Baker. However, he still has some work to do on his Series IIa Land Rover, which he found on the French/German border. He says that this wonderful oily rag vehicle brought him back some 600 miles to Austria without any problem.

In addition to the Series IIa Landy (some say Landie) he owns a Series III 109.

He describes restoration work on old vehicles as **Lego for adults**, which brought a huge smile to my face.

So there you have it, an expanding little T-Type community in Styria, the south-eastern part of Austria.

Ed’s note: Gerrit is going to let me have a little article for the next issue on TD MK IIs with some pictures of the main distinguishing features.

Articles are always welcome!

Quite a challenge for Peter Clarke in New Zealand!

This is what Pete Clarke started with. It’s TD25846. He’s actually come a long way with the car in 2½ years, learning from mistakes as we all should do. I’ll publish the latest pic in the next issue.

Totally T-Type 2, August 2019
Some Rally winning cars of Betty Haig

The following from Doug Nixon:

“Please find some photographs taken in the rain on 9th May at Brooklands.

Roger Farmer (author of *A LIFE BEHIND THE WHEEL* – Betty Haig Biography) held a talk on the life and cars of Betty Haig which was brilliant. The pictures show 4 of her Rally winning cars which attended the talk.”

From right to left are the 1946 Alpine AC 16/80, the Berlin Olympics Singer, the Paris-St Raphael/Innsbruck Singer and Doug’s 1949 Alpine TC flying the flag for our T-Types.

A T-Type Weather Vane

Here’s a novel idea for a birthday or Christmas present for the T-series owner. Sent to me by Ian Ailes, whose wife bought it for him for Christmas.

Obtainable from Black Fox Metalcraft Limited of Sale, Cheshire www.blackfoxmetalcraft.co.uk

TF5873 (NWX 184)

Here’s a pleasing colour combination – well it’s pleasing to me and pleasing to its owner! The car was originally green with tan trim. It has since been red, then black and now cream with dark red upholstery.

TF9220 (MSG 495)

Owned since 1967, this home-market TF1500 was acquired by its present owner with help from his aunt. She said that she would give him 300 GBP towards a car on the condition that it had a hard roof, so ‘square riggers’ were out……..until ‘Godiva’ was found! The hard top is thought to have been purchased new with the car in Scotland. Hard tops were available for TDs (made by Runyan), but I have never heard of them being available for the TF. Anyone know?
LOST & FOUND

TD26050 (NEL 366)

David Smith first owned this car in 1966. It was originally green and a non-runner. His father - a Rolls Royce engineer – helped him to rebuild the engine. The 1¼” SU carburettors were replaced with a pair of 1½” and a straight through exhaust was also fitted.

The car was used as the wedding car for his marriage in Cranborne (Dorset) but on the way to the honeymoon in Salisbury it blew a core plug in the cooling system, the only time it ever let him down. A temporary repair was undertaken by his father, using a penny (the pre-decimalisation penny!).

The car has undergone a couple of changes of colour; from green to white in 1967 and from white to red in 1968 before it was sold in 1969 to buy a larger family car. It is now black with beige upholstery and is on the road.

David, who now lives in Thailand has fond memories of ‘Nel’. He can be contacted at uptlou(at)gmail.com [please substitute @ for (at)].

1955 TF1500 (Chassis number unknown).

Colin Lambon owned a TF 1500 in Bulawayo (Rhodesia) in the late 1950s. In those days he didn’t think of keeping details for posterity. His TF1500 was purchased second hand from the original owner in approx. 1955/6. It was body colour green with tan or green upholstery. He would really like to find out what happened to it.

Colin’s contact details are colinlam(at)telkomsa.net [please substitute @ for (at)].

Ed’s note: According to my copy of Clausager there were no TF1500s exported to (the then) Rhodesia.

TA1773 (GMX 420)

Karen Sutcliffe would like to get in touch with the present keeper of this TA. It was once owned by her dad and the photo shows him sitting in the car.

GMX 420 is on the road, having been totally rebuilt.

Karen can be contacted at karen6169(at)hotmail.co.uk [please substitute @ for (at)].

TA???? (1938) DRK 184

An enquiry was made about this car some time back. I now have a picture which hopefully might jog someone’s memory.

From a previous enquiry, it has now been established that the car is now black and living in Scotland, but much work is needed to get it back on the road.
CLASSIC CAR INSURANCE?

THE HARD WAY

- Ring an insurance broker that’s not Hagerty. Spend half an hour explaining why your classic isn’t just “an old banger”.

- Politely decline home, pet and travel insurance. Patiently explain that you only need agreed value classic car insurance. To get off the phone, promise to get a quote for your home “in the near future”.

- Go out to the garage, pull off your car’s cover, snap several photographs. Email photos but hear back that “the photos are too dark” or “we need six and you only sent five”.

- Cough up a £15-50 “certification” fee, on top of your policy premium.

- Wait on hold half an hour while their staff reviews the information. Lose the connection. Ring back, get transferred to three wrong departments. Get put on hold again.

- The Agreed Value certification finally arrives. You begin looking forward to repeating the entire tedious, maddening process, fee included, if you want to increase your value again.

THE EASY WAY

- Call Hagerty. 0333 323 1383.

- Go for a relaxing drive.

HAGERTY. CLASSIC CAR INSURANCE

HAGERTYINSURANCE.CO.UK